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Coherent vibrations of submicron spherical gold shells in a photonic crystal
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Coherent acoustic radial oscillations of thin spherical gold shells of submicron diameter excited
by an ultrashort optical pulse are observed in the form of pronounced modulations of the transient
reflectivity on a subnanosecond time scale. Strong acousto-optical coupling in a photonic crystal
enhances the modulation of the transient reflectivity up to 4%. The frequency of these oscillations
is demonstrated to be in good agreement with Lamb theory of free gold shells.
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Acoustic motion in nanoscale objects driven by light
has attracted considerable attention over the last decade.
The interest is explained by various potential applica-
tions in nanomechanics, like nanomotors [1], ultrahigh-
frequency acoustic oscillators [2], and acousto-optic mod-
ulators [3].

Vibrational modes confined in nanoparticles can be ex-
cited by a short optical pulse and observed as modula-
tions of the transient reflectivity or transmission on a
picosecond timescale [4]. Up to now such vibrations have
only been observed in the core of solid particles. Re-
cent progress in fabrication of monodisperse multicoated
metallo-dielectric colloids [5, 6, 7], arranged in a peri-
odic fashion and forming a photonic crystal [8] makes
vibrations localized in thin shells accessible for experi-
ments. Excitation of acoustic vibrations in such struc-
tures has two important aspects: First, a shell requires
much less vibrational energy than a massive sphere would
to reach equal optical responses. Second, the photonic
order may enhance the acousto-optic coupling. Thermal
quadrupolar hollow-shell vibrations of nickel-silver core-
shell nanoparticles have been recently observed in Raman
scattering experiments [9]. However, to the best of our
knowledge optical excitation of ground-state oscillations
localized in a shell has never been shown. In this Rapid
Communication we demonstrate optical excitation of co-
herent radial oscillations of thin gold shells covering inner
silica cores of submicrometer diameter. We determine the
intrinsic lifetime of these Lamb modes.

Our particles consist of a 228-nm radius silica core, a
gold shell with a thickness of 38 nm, and an outer silica
shell with a thickness of 10 nm. The particle size poly-
dispersity is < 5% as deduced from transmission electron
microscopy (TEM) pictures [8]. The particles were as-
sembled in close-packed ordered three-dimensional (3D)
arrays thus forming a metallo-dielectric photonic crystal
that serves to enhance acousto-optical coupling. The de-
tails of the particle synthesis can be found in Ref. [8].
For our studies we select a highly ordered region on the
sample, where the photonic crystal is thicker than the
penetration depth of the light and the reflection from
the substrate is negligible. Our structure possesses spa-

tial periodicity for both acoustic and optical properties.
Since the spheres are in mechanical contact only in few
points, the acoustic interaction of adjoining spheres is
expected to be small and further neglected. However,
the periodic arrangement is important for the electro-
magnetic waves and here serves to enhance the acousto-
optical coupling. The black solid line in Fig. 1 shows
a typical linear reflection spectrum of a highly ordered
part of our photonic crystal. The spectrum has several
resonances, which appear to be much sharper than for
a dilute array of the same but in this case optically un-
coupled particles [7]. In our sample we distinguish two
kinds of resonances [10, 11, 12]: First, the so-called Bragg
resonance for wavelengths close to the lattice spacing pa-
rameter, λ ∼ 576 nm. The spectral position of this reso-
nance is strongly dependent on the incident angle of the
incoming light. Second, collective plasmonic Mie reso-
nances, which are independent of the angle of insidence
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FIG. 1: (Color online) Measured linear reflection spectrum
of an ordered 3D array of silica-core gold-nanoshells with a
silica outer shell (black solid line). Gray (red) squares show
the measured amplitude of oscillations in the transient reflec-
tivity, A1, dashed line the calculated values δR/R: according
to Eq. 4 for λ > 650 nm and δR/R = 0 for λ < 600 nm,
respectively.
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and dominate the reflection spectrum for λ > 650 nm.
These collective Mie resonances, however, are coupled
with Bragg modes, particularly for λ < 650 nm.

Our sample was excited by a 120-fs pulse extracted
from an 800-nm amplified Ti-sapphire laser operating at
1 kHz. The pump pulse was focused onto a 400-µm
spot at the sample surface with an energy density of
∼ 0.5 mJ/cm2 per pulse. This density is close to but
slightly below the damage threshold and at least one or-
der of magnitude less than the excitation power used to
reach the melting temperature in solid spheres [13]. The
transient reflectivity was probed by a white light contin-
uum generated by a beam split-off from the same laser
and focused either in a cuvette filled with acetone or
in a sapphire plate. The white-light pulse was passed
via an optical delay line and focused onto a 25-µm spot
at the sample surface within the illuminated area of the
pump. The reflected light was subsequently dispersed in
a spectrometer and registered by a charge-coupled device
(CCD). Temporal evolutions of the reflectivity integrated
over a selected 30-nm bandwidth and as a function of de-
lay were detected by an InGaAs photodetector equipped
with an amplifier with 0.1 ms response. The signal from
the photodetector was integrated by a digital voltmeter
over 10 µs. All experiments have been carried out at
room temperature.

The dynamics of the transient reflectivity is found
to be dependent on the selected probe wavelength. In
Fig. 2, the black solid lines show evolutions of the tran-
sient reflectivity, ∆R/R, registered at (a) 950 nm and
(b) 700 nm. The inset in Fig. 2(b) shows the signal at
700 nm at full scale. Unfortunately, the spectral range
of 740− 950 nm was not accessible for measurements be-
cause of intense scattering of the 800-nm pump beam.
Both curves have a large and sharp peak of picosecond
duration immediately after the pump. On a subnanosec-
ond timescale the transient reflectivity shows a quite dis-
tinct behavior. In both Fig. 2(a) and (b), we observe
pronounced oscillations of the reflectivity with a period
of about 400 ps, independent of the probe wavelength,
λ. The amplitudes of these oscillations, however, are de-
pendent on λ and reach an amplitude as much as 4% of
the total reflected intensity at λ = 950 nm [Fig. 2(a)].
In a disordered sample of the same batch of particles,
however, we were not able to measure any oscillations.
We explain this phenomenon by the fact that optical res-
onances in our photonic crystal are much sharper than
in arrays of individual gold-shell spheres [5, 6, 7] and,
as a result, exhibit a much stronger acousto-optical cou-
pling. At λ = 700 nm, the amplitude of the oscillations
is smaller but still quite sizable. Further, we did observe
weak oscillations at 600 nm (not shown in Fig. 2) but
we found no oscillations at other wavelengths. It is in-
teresting to note that at 950 nm and 700 nm the initial
peaks have the same signs, while the slow oscillations
have opposite polarities. This directly shows that the
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FIG. 2: (Color online) Transient reflectivity dynamics of the
gold-shell array measured at (a) 950 nm and (b) 700 nm.
Black solid lines depict experimental data, red dotted lines
show the fits. Inset shows the signal measured at 700 nm
plotted including the entire electronic contribution.

fast spike and the slow oscillations must have different
origins. The temporal evolution of the signal can be ap-
proximated quite faithfully by the function

∆R

R
= −A1 exp (−t/τ1) cos

(

2π

T
t− ϕ

)

+A2 exp (−t/τ2) .

(1)
Here, t is time and the fitting parameters T and ϕ are
the period and the phase of the oscillations, respectively,
and τ1 and τ2 decay times. Further, A1 and A2 are am-
plitudes referring to the oscillatory and non-oscillatory
decay, respectively. The best fits of ∆R/R for 950 nm
and 700 nm are shown by dotted lines in Fig. 2(a) and
(b), respectively. The results are collected in Table I.
Clearly the period and the phase of the oscillations are
virtually constant over the full spectral range as are τ1
and τ2. The lowest line of Table I collects the average
values of all fitting parameters over different wavelengths
and points on the sample. We conclude that the detected
phase of the oscillations is zero radians and the period of
oscillations is 390 ps with a standard deviation of 5%.
The initial peak in the transient reflectivity is caused

by hot electrons in gold. The subsequent dynamics is due
to equilibration of the electron gas with the lattice [4] and
takes no longer than 20 ps. The nature of the oscillations
can not be found in electron-temperature variations. We
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TABLE I: Fitting parameters of the transient reflectivity using Eq. (1) for different wavelengths. Last row summarizes the
average values from different measurements.

λ (nm) A1 A2 τ1 (ps) τ2 (ps) T (ps) ϕ (rad)
950 −0.021 −0.028 482 1176 406 0.0
700 0.0047 −0.015 633 1510 378 0.08π
600 0.0043 −0.025 770 > 1000 381 −0.06π

Average depends on λ depends on λ 600± 200 1300± 300 390± 20 0± 0.1π
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FIG. 3: Sketch of (a) l = 0 (radial), and (b) and (c) two types
of l = 2 spheroidal vibration modes of a hollow shell sphere.

attribute the 390-ps oscillations in the transient reflectiv-
ity to induced coherent acoustic vibrations of the submi-

cron gold-shells following a rapid change in lattice tem-
perature of the gold shell.
In order to determine the eigenfrequencies of the acous-

tic vibrations of the particle we assume that the acoustic
coupling of the gold shell to the silica core and outer shell
is weak and the acoustic response in our particles can be
modeled as that of a free-standing thin hollow sphere.
This approach is justified by the substantial acoustic mis-
match between silica and gold and the weak mechanic
contact between core and shell. Indeed, the thermal ex-
pansion coefficient is much higher for gold than for silica
and, therefore, at elevated temperature the gold shell is
not in contact with the silica core. Vibrational modes of a
thin shell are classified into two categories - torsional and
spheroidal modes [14], of which only the even-l spheroidal
modes are optically active [15]. Of all even-l modes, the
most important ones are expected to be the l = 0 and the
l = 2 spheroidal modes because they possess the highest
symmetry and therefore optical coupling. A sketch of
these modes is presented in Fig. 3.
Assuming zero tension on the interfaces, the period of

the Lamb oscillations can be expressed [14] for the ground
l = 0 mode as

T0 = πξ−1/2rs/ct (2)

and for l = 2 mode as

T2± = 2π
[

5ξ + 2±
(

25ξ2 + 4ξ + 4
)1/2

]−1/2

rs/ct. (3)

Here, ξ = 3−4 (ct/cl)
2, ct = 1200 m/s and cl = 3240 m/s

are the longitudinal and transverse sound velocities of

gold, respectively. Further, rs = 247 nm is the aver-
age radius of the gold shell. Using Eqs. (2) and (3) we
obtain T0 = 413 ps for the l = 0 mode. The exact
solution for 38 nm thick shell gives T0 = 411 ps con-
firming the validity of the thin shell approximation. For
lower- and higher-frequency branches of the l = 2 we
find T2+ = 1074 ps and T2− = 249 ps, respectively. Tak-
ing into account a 5-% spread in the measured period at
different locations on the sample, we arrive at the con-
clusion that the calculated l = 0 mode (T0 = 411 ps) is
within the experimental error from the value found in the
experiment, T = 390 ps, while the slower l = 2 mode is
too slow. We also checked that oscillations of the silica
core are too fast to explain the experiment: Using equa-
tions for the acoustic vibrations of a solid sphere [16] with
ct = 3760 m/s and cl = 5970 m/s for silica, we found a
period of 145 ps for the lowest Lamb mode.

Oscillation of the gold shells are the result of the rapid
increase of the gold lattice temperature ∆T and associ-
ated thermal stress induced by hot electron-phonon re-
laxation. This is consistent with the observed zero phase
of the optical oscillations (see Table I).

Portales et al. studied resonant Raman scattering from
nickel-silver core-shell particles and found that their spec-
tra can be explained quantitatively by thermal l = 2 vi-
brations of the silver shell, i.e. assuming a stress-free in-
ternal boundary conditions at the core interface [9]. This
mode, however, is not observed in our pump-probe exper-
iment. For solid spheres the difference between Raman
and pump-probe experiments is well-known [9, 17, 18].
In Raman scattering measurements excitation is thermal
and modes are occupied according to a Planckian distri-
bution. Since Raman scattering is primarily sensitive to
dipolar plasmon coupling with the modulation of the sur-
face charges induced by a quadrupole vibration (l = 2) of
the sphere, the l = 2 peak prevails. In contrast, pump-
probe experiments are impulsive and after a time much
shorter than the period of the acoustic oscillations, elec-
trons are expected to reach a thermal equilibrium dis-
tribution in the entire volume promoting the excitation
of l = 0 mode. Indeed, the penetration depth of hot
electrons in gold is ∼ 300 nm, which is comparable to
a quarter of the gold-shell circumference [19]. As a re-
sult, the l = 0 mode is predominantly excited also in our
relatively large particles.

The oscillation amplitude of ∆R/R can be estimated
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by the following simple model. As already mentioned,
the spectral peak near 576 nm is due to Bragg scatter-
ing in the photonic lattice. Since the acoustic vibrations
of the gold sphere do not affect the lattice parameter of
the gold-shell photonic crystal we expect that the oscilla-
tion of ∆R/R vanish near the Bragg resonance (left red
dashed line in Fig. 1). In the red and infrared spectral
ranges (λ > 650 nm), however, the spectral features are
due to plasmon resonances. Periodic contractions and
dilations of the gold shell lead to a periodic modulation
of the dielectric constant of gold, ε, and thus shifts the
plasmon resonances back and forth. The modulation of
transient reflectivity caused by the acoustic oscillations
of shell can be expressed as

δR

R
=

∂R

R∂λ

(

∂ε

∂λ

)−1

δε, (4)

where δ denotes the oscillation amplitude. The dielec-
tric constant of gold can be expressed as a sum of the
interband and intraband Drude terms, ε = εi − ω2

p/ω
2,

with ω = 2πc/λ optical frequency, c speed of light in
vacuum, ωp the plasma frequency, which is proportional
to the square root of the electron density, ωp ∝ √

n.
For sufficiently long wavelengths (λ > 650 nm), we ne-
glect |δεi| ≪ |δε|[20], and the modulation of the di-

electric constant reads δε = − (ωp/ω)
2
(δn/n). Noting

that n is inversely proportional to the volume we obtain
δn/n = −3α∆T , with α = 1.42 × 10−5 K−1 the linear
thermal expansion coefficient [21]. The rise in the gold
temperature, ∆T , in turn, can be estimated from the
electron-phonon equilibration dynamics in a framework
of a two-temperature model. Analysis of ∆R/R kinetics
on the picosecond timescale in terms of rapid cooling of
the electron gas and heating of the gold lattice [4] allows
us to estimate ∆T = 100 ± 50 K. In Fig. 1 the mid-
dle and right red dashed lines show the estimated δR/R,
which appear to be in a qualitative agreement with the
experimental data (red solid squares).
The observed decay of the oscillations of ∆R/R can-

not be explained by dephasing caused by inhomogeneous
variations in the thickness or diameter of the gold shells.
Indeed, the oscillation period of a thin gold shell is in-
dependent of the shell thickness. Further, if we assume
that the particles are normally distributed with a stan-
dard deviation σr ≪ rs, then for t ≪ Trs/σr the inho-
mogeneous decay of the oscillation amplitude of ∆R/R
can be expressed as [22]

S (t) ∝ cos (2πt/T ) exp
[

− (t/τd)
2
]

, (5)

with τd = rsT/
√
2πσr. Inserting T = 390 ps and

σr/rs = 0.05 known from the TEM data [8] we obtain
τd = 1.75 ns, which is three times longer than the ex-
perimentally observed decay 0.6± 0.2 ns. Therefore, this
inhomogeneous dephasing mechanism is too slow to fully

explain the data. We believe that the decay of oscilla-
tions can be explained by residual coupling of the radial
l = 0 mode with other acoustic modes.

In conclusion, the room-temperature transient re-
flectivity of a photoexcited silica-gold multishell pho-
tonic crystal exhibits pronounced oscillations up to the
nanosecond time scale. High acousto-optical coupling in
our photonic crystal in the red and infrared serves to
reach oscillation peak-to-peak amplitude as high as 4%
of the total reflectivity at moderate pump power. These
oscillations are caused by coherent, radial vibrations of
the gold-shells. The frequency of the acoustic vibrations
is found in good agreement with classical Lamb theory
assuming free boundary conditions on both sides of the
shell. The damping of the ground Lamb mode was shown
to occur on a subnanosecond time scale and points to a
weak interaction with other acoustic modes. Propaga-
tion of acoustic waves in a periodic array is an inter-
esting point for future experiments. Of particular in-
terest is the band of acoustic modes between the lowest
l = 2 and the fundamental l = 0 modes, which is specific
for spherical shells. Our result can be useful for vari-
ous acousto-optical applications, like fabrication of high-
frequency band-pass acoustic filters and switching of light
propagation in photonic crystals by acoustic waves.
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82, 5082 (1997).
[20] M. Garfinkel, J. J. Tiemann, and W. E. Engeler,

Phys. Rev. 148, 695 (1966).
[21] F. C. Nix and D. MacNair, Phys. Rev. 60, 597 (1941).
[22] G. V. Hartland, J. Chem. Phys. 106, 8048 (2002).

http://igitur-archive.library.uu.nl/dissertations/2004-1025-125904/index.htm

